

Therese Griebel NASA Glenn Research Center

Overview

- Current developments in technology that could meet NASA, DOD and commercial mission objectives
- Applications of Solar Electric Propulsion (SEP) vehicle development for NASA priorities
- Opportunities to meet Commercial Servicing needs as spin-offs from NASA's SEP vehicle

Electric Propulsion

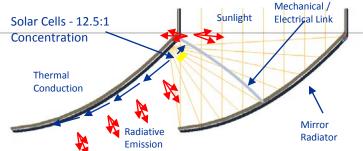
NEXT is Nearing TRL6 Validation

Critical tests have been completed, or are imminent, on high fidelity hardware

	Thruster	PPU	PMS	Gimbal
Functional & Performance Testing	Complete	Complete	Complete	Complete
Qual-Level Vibration Test	Complete	FY2010	Complete	Complete
Qual-Level Thermal/ Vacuum Test	Complete	FY2010	Complete	Not in project scope

- Single-String Integration Test and Multi-String System Integration Testing (90% complete)
- Thruster Life Test: In progress & continuing through FY2013
- PM wear test: Complete

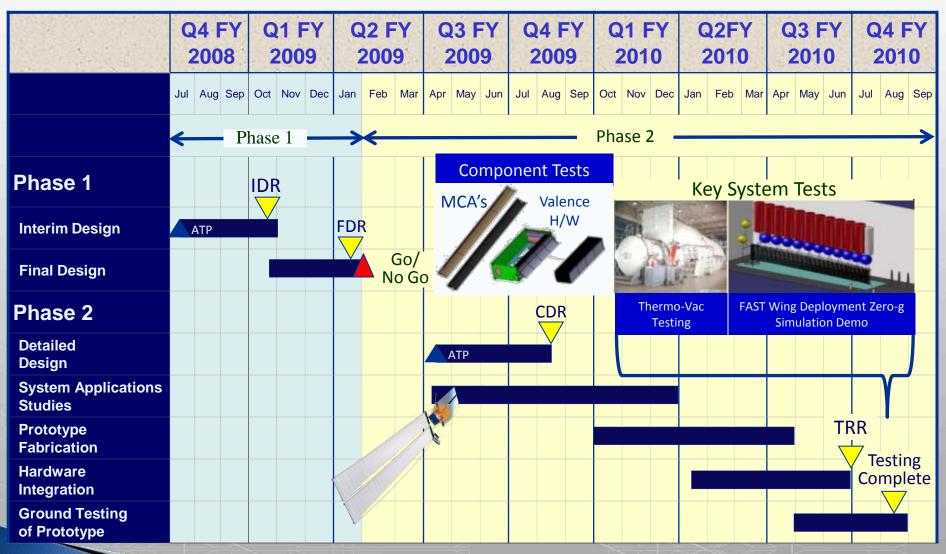
NEXT Transition-to-Flight Planning


- Complete Phase 2 of Technology Development
 - FY10: EM PPU testing complete, Project Close-out Review
- Phase 3: First-User Risk Reduction
 - FY11-13: Continue thruster long duration testing and associated life validation tasks
 - FY11-13: PPU risk reduction development activities
 - Address desired design and analysis updates identified in technology development
- Continue comprehensive independent thruster testing at Aerospace Corporation
 - Testing has begun with Aerojet-fabricated Prototype Model thruster

Fast Access Spacecraft Testbed

Fabricate a high power and light weight solar electric array that can support a wide range of space applications, and ground test it in a relevant space environment

<u>GOALS</u> >20 kWe electrical power >130 W/kg specific power Scaleable to 80 to 1,000 kWe



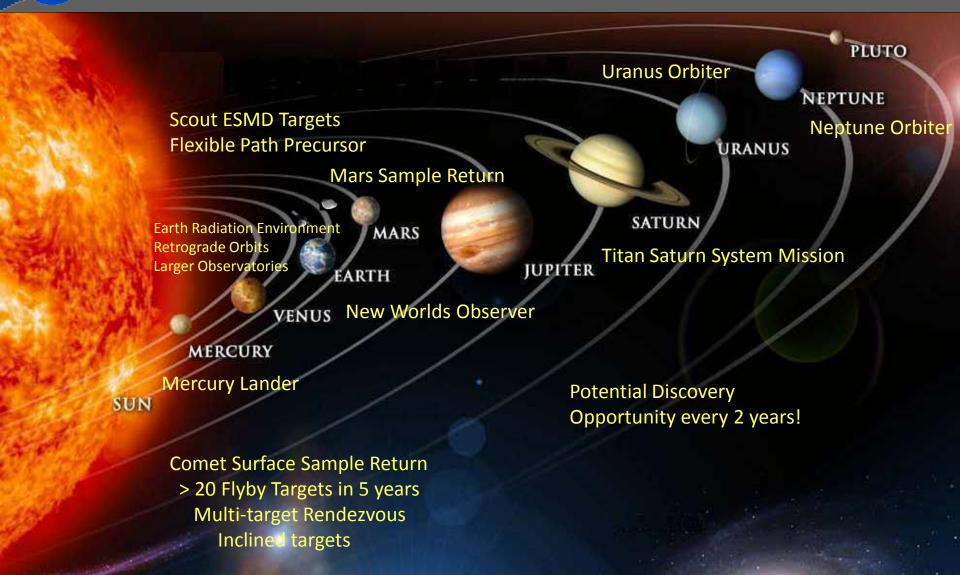
MCA Solar Performance Characteristics

DARPA FAST Schedule & Testing

Approved for public release, distribution unlimited

Cleared for Public Release DISTAR Case 13717

Current Phase II FAST Effort


- Goal is to develop and perform ground demonstrations of a 30 kW High Power Generation System. When combined with a state-of-the-art electric propulsion system (e.g., NEXT), it will form the technological basis for a lightweight, high power, highly mobile spacecraft platform
- Offers the potential for high specific impulse missions which downsize the size of the launch vehicle required or significantly increases the payload mass to high-energy orbits
- FAST Integrated Power Demo (IPD) Objectives
 - Demonstrate the FAST concentrator solar array (@ NASA GRC).
 - Measure solar array performance in a simulated space environment, including effects of thermal vacuum, solar illumination, and spacecraft electrical loads.

Overall Approach

- Use subsystem and component level tests to validate thermal, optical, structural and contamination models.
- Demonstrate system level performance in an illuminated thermal vacuum test (at NASA Glenn Research Center).
- Use the test results to generate power predictions for each mission environment.

NASA Space Science Missions Enabled by SEP Stage or Standalone Bus

SMALL BODIES

NASA Exploration Mission Applicability

- Near-term Exploration Missions Particularly for Flexible Path Architectures
 - Spacecraft for in-space transfer of cargo and robotic systems to planetary orbits and Near Earth Asteroids (NEAs)
 - Return of cargo, samples and other elements to Earth
- High-Performance Crewed Missions
 - Advanced high power thruster and power technologies
 - Variable specific impulse and operation at high specific powers
 - Large reduction in travel times for piloted vehicles and extension of human exploration sphere to Asteroid Belt and beyond

\bullet High- ΔV capability tugs and servicing spacecraft

- Key element for propellant resupply and servicing operations in non-LEO orbits
- Enables multiple orbit transfers between LEO to GEO and reusability
 - Launch to LEO on ELV
 - Transfer to GEO using Electric Propulsion
 - Service up to two dozen clients
 - Periodically return to LEO to rendezvous & grapple with new payload launched on ELV
 - Execute new mission with refreshed payload, tool kit, propellant & electric thrusters

 Could also perform repositioning/removal of satellites and assets

Notional Space-tug Technology Roadmap

 Advancing FAST and NEXT into a design for an SEP stage quickly integrates emerging complementary technologies into an operational spacecraft

Summary

- The SEP system and stage enable low cost/low risk opportunities for multiple DOD, NASA and commercial payloads
 - The bus will be designed to interface with either the NEXT or high power Hall thrusters, enabling earth orbital missions as well as deep space science missions
- SEP Stage enables cost effective missions within Earth orbit, Cis-lunar, NEOs, and deep space robotic science missions
- SEP Stage enables robotic missions to be launched on smaller, lower cost launch vehicles to reduce launch costs
- Builds a new national capability that will dramatically enhance the competitiveness of existing U.S. launchers by minimizing the requirement for on-orbit propellant