

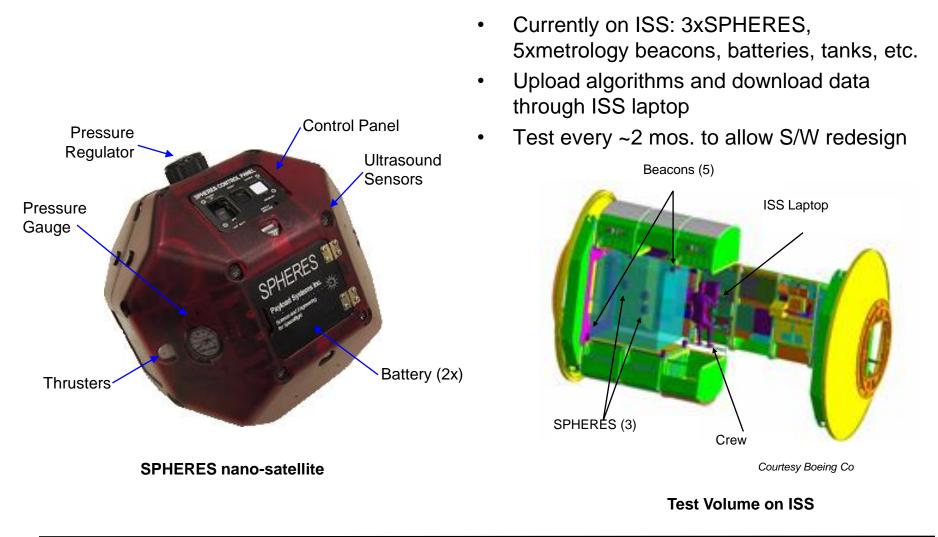
"The SPHERES ISS Microgravity Testbed as a testbed for AR&D and servicing

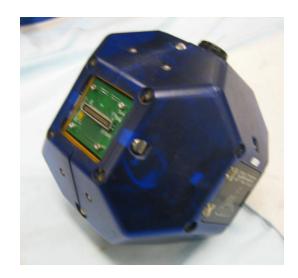
Dr. Javier de Luis Dr. Swati Mohan

Objective: to develop a reconfigurable and risk-tolerant laboratory for maturing close-proximity satellite GN&C algorithms under micro-gravity conditions

- Long duration μ -g is essential
 - Full 6-DOF motion (incl. quaternion slews, tumbling, nutation)
 - Proper contact dynamics
 - Key element of space environment needed for reaching higher TRL's
- Reconfigurable
 - Permit spiral development through reconfigurable software
 - Enable mission specialization through mounted payloads
- Risk-tolerant
 - Push technology under both nominal and off-nominal conditions

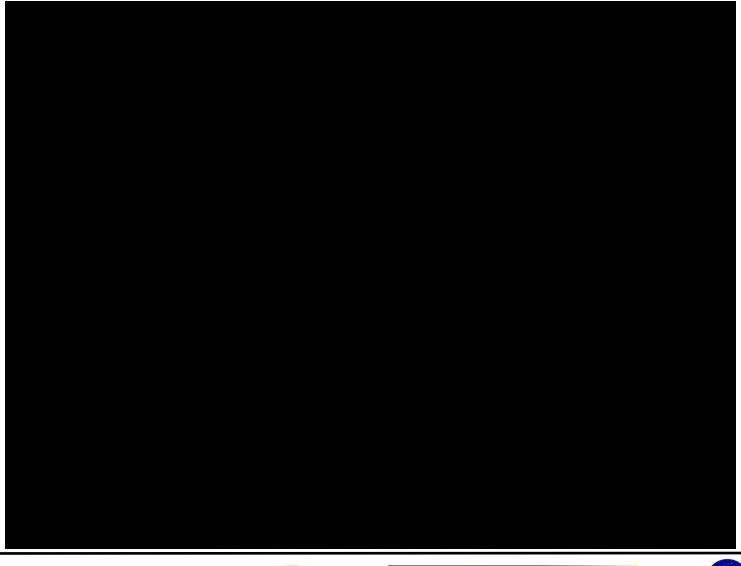
- Three nano-satellites inside US Laboratory on ISS
 - Cold-gas propulsion, inertial and ISS-relative sensing, expansion port, RF-communication



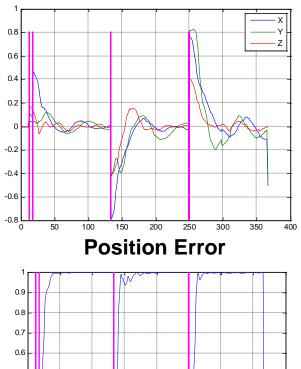


- Algorithm Development
- Can develop, test, and mature algorithms related to AR&D and servicing
- **Close Proximity Operations**
- Docking
- Reconfiguration
- **Fuel Slosh**
- Vision-Based navigation
- Path Planning

- **Expansion Port Payloads**
- Can augment SPHERES functionality with additional payloads through Expansion Port
- Docking Port, Camera, ...



Autonomous Rendezvous & Docking



- Method
 - Crew starts by joining two satellites by the Velcro face
 - The satellites are both one
 - One satellite calculates the control for all thrusters (in both satellites), and radios the thruster on-times to the second satellite as they maneuver together with both position and attitude control
- Results: Success
 - Position error < 2cm in steady state
 - Response within 60 seconds to large displacements (10cm)
 - Attitude error is basically zero; response within 20 seconds
- Future Tests
 - Perform path following for assembly scenarios

Attitude Error

Expansion Port Payloads

US transmitter

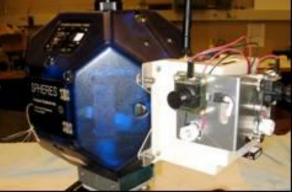
IR transmitter

Universal Docking Port

- Fully autonomous
- Genderless
- Provides
 - Docking to ±1° accuracy
 - Relative state estimation capability

Goggles Camera

- 2 cameras
- LED Lights for illumination
- 1 GHz processor for image processing
- 802.11g Wi-Fi
- Lithium-Polymer battery
- 895 g package



Approved for Public Release – Distribution Unlimited

IR receiver

US receiver

International Space Station Hosted SPHERES Integrated Research Experimentation (InSPIRE)

	Distributed Computing (TTO)	μ-EMFF/WiTricity (TTO)	Micro Atomic Clock Testing and Characterization (MTO/TTO)	Fuel Slosh (KSC)
Problem	 High thru put, low power, rad hard processing for distributed computing 	 Prop-less maneuvering via micro electromagnetic formation flying Inductive wireless power transfer 	 Ultra-small, low-power, atomic time and frequency reference unit 	 Poorly modeled zero-g fluid dynamics On-orbit data needed to calibrate (natural freq and damping ratio of fluid)
Experiments	Demo SPHERES performing command/control of neighboring SPHERES	 Demo Reactive Collision Avoidance (RCA) Demo wireless power transfer with visual cue (light, meter) 	 Demo anticipated accuracy drift Calibrate vibration modes and structure stability 	 Measure fuel slosh at zero-G conditions 2 tanks attached to a truss connected between 2 SPHERES
Hardware	One (1) HyperX computing module	 Three (3) 30 cm diameter electromagnetic coils with expansion port module 	One (1) Integrated Micro Atomic Clock Primary Clock Technology (CSAC) module	 Truss containing two (2) transparent tanks of dyed water and camera module
Metric Today	RAD750: 266 MIPS No on-orbit distributed control	 uEMFF – 3 DOF relative maneuvering on flat floors, air carriages at 60cm WiTricity – AFS Demo of 80% eff. over 40 cm, 60W output 	Temex RMO • Timing error – 1 μ-sec/day • Power – 10 W • Volume – 230 cm^3	 No sustained 0-G data collected to date Parabolic flight tests not feasible (fluidic settling times, etc)
InSPIRE Goal	 HyperX - 50,000 MIPS First ever non-local control of satellites 	 uEMFF – 3 closing SPHERES maintain closest approaches btw 15-20cm WiTricity - >80% eff. at 1m 	CSAC • Timing error – 1 μ-sec/day • Power - 30 mW • Volume - 1 cm^3	 First ever systematic 0-G natural freq. and damping ratio characterization 30-40% improvement in fuel slosh model accuracy

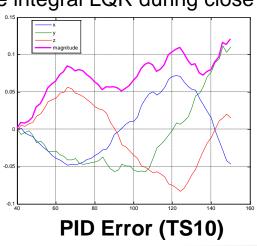
Problem	LIIVe* (NRL)	Grand Challenge With the second seco	Hardwar	
Experiments	 Demo collision avoidance with dead reckoning navigation Fiducial tracking and re- acquisition Collision avoidance 	Example challenges: • Chaser SPHERE tries to hit target SPHERE while Target SPHERE tries to evade chaser SPHERE • Capture the flag	 ▶ Consul Uniquen ▶ First ev − Non − Eleo − Wire 	
Hardware	Optical sensor module	No hardware, only software mods		
Metric Today	•<5 cm pos error using fiducial @ 3 m on air bearing table (2D)	 Robotics competitions are limited to terrestrial and atmospheric flight regimes 	– Mici – Lon slos – Con	
InSPIRE Goal	 < 5 cm 3D pos err w/ fiducial @ 3 m Demo collision avoidance taking 90 deg turns on ISS 	• Enable high school and college students to design, test, and implement S/W code on 0-G environment	001	

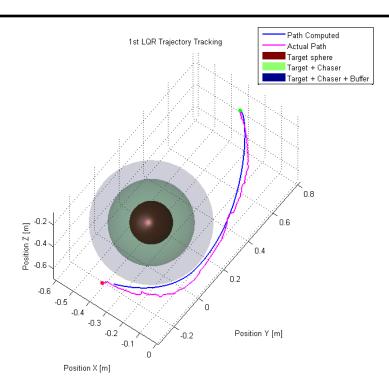
re Status:

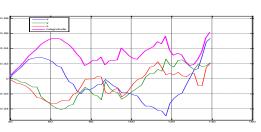
- nt Technology Readiness Levels: TRL-4
- plogy Readiness Levels post flight: TRL-7
- RES, metrology, and RF comm on ISS
- ment-Specific Hardware: April 2011
- mables (batteries, CO2): before April 2011

less:

- ver on-orbit
 - -local control of satellites
 - ctromagnetic formation flight
 - eless power transfer
 - ro atomic time keeping validation
 - g-term, iterative characterization of 0-G fluid h
 - npetition for high school and college students




10



Docking: LQR Control

- Method
 - Perform the same on-line path planning docking as in TS10, but use an LQR controller to follow the calculated path.
 - Target satellite points away from chaser; chaser must go around target to dock properly
- Results: Success
 - Successful docking
 - Path following error reduced from ~10cm to ~5cm
- Future Tests
 - Use integral LQR during close proximity

LQR Error (TS12) NOTE: plots re-sized to same scale

