

Draper Laboratory Overview of Rendezvous and Capture Operations

Ian T Mitchell imitchell@draper.com 281-212-1115

March 26th, 2010

Approved for public release, distribution unlimited

Motivation for Rendezvous

Autonomous Rendezvous is a critical capability

Sample Return

Exploration

Re-constitution

Inspection/Escort

Servicing

Approved for public release, distribution unlimited

Rendezvous Flight History

Approved for public release, distribution unlimited

State-of-the-Art and Key Technologies

- All Systems developed are mission-unique (e.g., human-rated systems require human-in-the-loop activity for flight ops)
- Sensor Technologies and Capabilities provide position and attitude knowledge for relative navigation across different ranges and mission profiles
- Level of Autonomy (On-board Mission Manager)
	- Provide capability to automate operations but maintain positive control
	- **Evolutionary approach to permit increasing autonomous control**
		- Initial capability for nominal control and failure detection
		- Subsequent incorporation of contingency rules for off-nominal cases
		- Eventually leading to rendezvous re-planning capability
- Grappling and Docking Mechanism Trades and Tolerances
	- Low-force capture reduces contact-collision force and increases safety
	- Androgynous system Identical units on each side of interface
- GN&C Algorithms are mature, cover most applications, need to be tailored Primary challenge is to perform the required unique integrated system design, analysis, and testing

Issues and Needs

- The GN&C system interacts with nearly every other sub-system in the vehicle, resulting in complex system trade-offs
- Integrated performance analysis is required to assure mission trajectories that meet sensor, clearance and safety requirements while minimizing impacts to the target spacecraft

Also, robust contingency operations are required

Typical GN&C System Performance Requirements

Navigation Sensor Types

Navigation Sensor Utilization & Transition

- Navigation system uses different sensor types along the trajectory
- Navigation system undergoes transition from one sensor type to another as the chaser approaches a target
- Navigation system performance is enhanced with the addition of higher accuracy sensor types

Trajectory Considerations

- Must accommodate unique tracking requirements of each sensor
	- Max range-rate, angle rate limits (e.g., lighting for optical system)
	- Sensor search volume can be minimized and acquisition time lengthened by appropriate trajectory design (e.g., co-elliptic approach)
- To accurately perform maneuvers, sufficient tracking time must be provided before performing the on-board computed maneuvers
	- **Large sensor random errors require smoothing**
	- Large observable biases require time to adequately estimate bias effects
- Profile should have inherent dispersion handling capability
	- robust to broad spectrum of dispersions while still maintaining integrity of desired profile characteristics with passive abort capability (desired)
	- Co-elliptic altitude difference must be large enough to maintain positive closing rate, despite dispersions, yet small enough to maximize acquisition opportunity
	- **Multiple rendezvous opportunities to handle contingency cases**
- Maneuver types/trigger points should be selected, where possible, that are insensitive to certain navigation errors
	- **Example: Use of elevation angle to specify terminal phase initiation** maneuver to maintain *standardized* closing profile to VBAR offset

Two Common Approaches To Rendezvous

- Stable orbit point on Vbar (Shuttle, Orbital Express)
	- **Provides opportunity to stop on** Vbar prior to rendezvous
	- **Opportunity for more ground** interaction
- Double Co-elliptic Approach (Apollo, XSS-11, COTS)
	- **Provides easily modulated variable** closing rate
	- Can be tailored to meet needs of sensors
	- **Passive abort capability**
	- Suitable for autonomous operation
	- **Minimal input from the ground**

Selection of rendezvous approach based on CONOPS, system requirements, sensors and actuators

Autonomous Flight Management

Orbital Express

- DARPA Advanced Technology Demonstration of Satellite Servicing **Operations**
- Draper Autonomous Flight Manager
	- On-board planner to control all spacecraft operations

XSS-11

- AFRL Proto-flight for a microsatellite to perform autonomous satellite inspection
- Draper Autonomous Flight Manager
	- On-board planner for trajectory and activity planning

Summary

- Systems engineering approach is required to develop acceptable sensor architecture that meets rendezvous and proximity operations mission requirements
- Development of autonomous operations requires an intimate knowledge of mission design, algorithms, system interfaces, requirements and the level of operator interaction
- Extensive navigation analysis should be part of the design process not just an afterthought
- Draper has supported and continues to support rendezvous flight programs past and present

