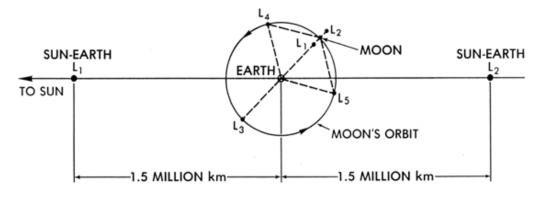
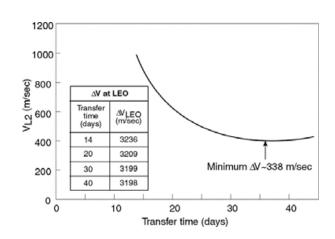


Human Servicing Mission: Sun-Earth L2 Telescope

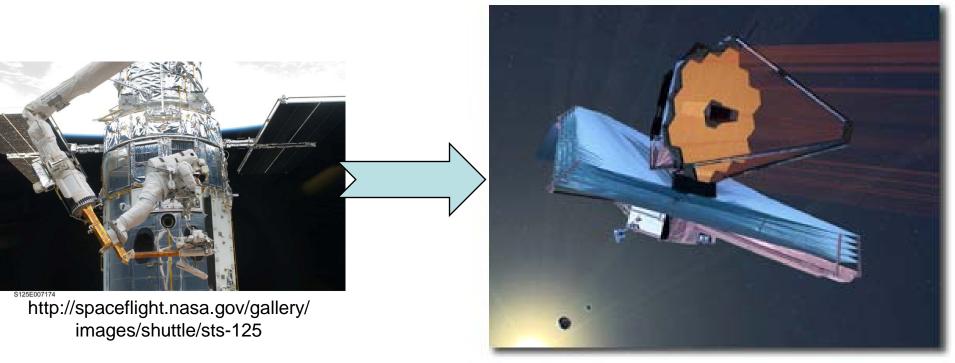

NASA GSFC International Servicing Workshop March 25, 2010

Dallas Bienhoff
Manager, In-Space and Surface System
703-872-4004; dallas.g.bienhoff@boeing.com

Human Servicing Mission (HSM): Sun-Earth L2 Telescope

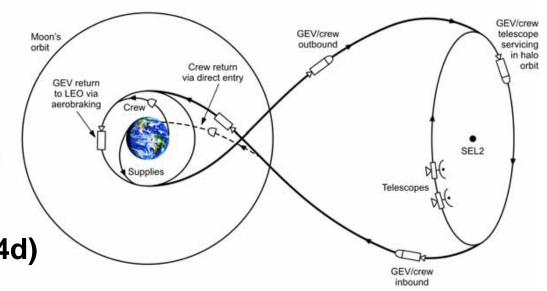

Mission Description

Mission Requirements


- Mission Systems
- Mission Mass Statements

Launch Manifests

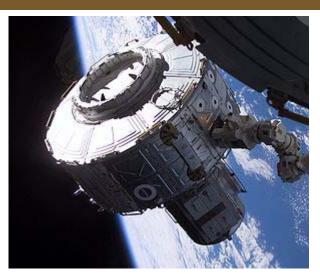
Mission Reference: "The Next Step in Exploring Deep Space," International Academy of Astronautics, 9 July 2004


Hubble Servicing Capabilities Are Applicable to JWST and other SEL2 Telescopes

SEL2 HSM Description

- Launch
- LEO operations
- LEO departure
- Transit (14 40 d)
- SEL2 arrival
- Telescope servicing (14d)
- SEL2 departure
- Transit (14 40 d)
- **Reentry preparation**
- Direct entry, aerobrake capture, or propulsive capture

Sun-Earth L2 Mission Scenario


SEL2 HSM Requirements

- Velocity changes
 - LEO departure/capture: 3198 3236 m/s
 - SEL2 arrival/departure: 338 1000 m/s
 - Post-aerobrake circularization: 100 m/s
- Personnel: 6 (4 EVA; 1 pilot; 1 commander)
- Duration: 42 94 d
 - 14 40 d out; 14 d @ SEL2; 14 40 d back
- Consumables: Oxygen, nitrogen, water, food
- Required capabilities: habitation, manipulators, EVA

SEL2 Telescope HSM Systems

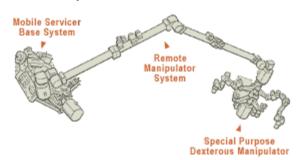
- Crew launch Boeing Crew Vehicle or SpaceX Dragon
- Transit habitation module Bigelow Sundancer
- Airlock ISS or Shuttle Airlock
- EVA Shuttle spacesuits
- EVA Tools Hubble tool kit
- Manipulator OE ARMS and ISS Dextre for robotic aid
- Telescope mechanical interface Hubble FSS

Existing Hardware Elements Can Support HSM for SEL2 Telescope

Quest Joint Airlock Module (NASA) or Shuttle Airlock

Bigelow Sundancer

Shuttle EVA Suits


Boeing Crew Vehicle

Hubble Flight Support System

Hubble Servicing Tool Kit

ISS Dextre by MDA

Orbital Express ARMS by MDA

Comparing Aerobrake with Direct Entry Shows Infrastructure Can Be Retained for 20 - 30 t IMLEO

Aerobrake Return to LEO

- Aerobrake 14.4
- Crew vehicle 10.0
- **Bigelow Sundancer** 10.0
- 1.8 6.1Airlock
- **Crew (6)** 0.8
- **EVA Suits (4) 0.5**
- 1.7 Dextre
- **Orbital Express ARMS 0.2**
- Repair kit 5.0
- Margin 7.0
- **Propellant** 75.6 156.9
- Transfer stage inert 8.3 15.2

129.5 - 223.8

Direct Entry

- Crew vehicle 10.0
- Bigelow Sundancer
- Airlock (Shuttle ISS) 1.8 6.1
- Crew (6) 8.0
- **EVA suits (4) 0.5**
- Dextre 1.7
- Orbital Express ARMS 0.2
- Repair kit 5.0
- Margin
- Propellant 63.9 - 133.6
- Transfer stage inert 7.1 14.8

111.1 - 192.4

SEL2 HSM Manifests Need 11 – 160 t Launch Capability

Aerobrake Return to LEO

Direct Entry

Manifest without Depot

1. Aerobrake, Hab, Tools 43.3 – 50.1

2. Transfer Vehicle 84.1 - 156.9

3. Crew Vehicle 10.8

Manifest 1 with Depot

1. A/B, hab, tools, stage **53.5 – 59.9**

2. Crew Vehicle 10.8

Depot Propellant 75.7 - 88.5

Manifest 2 with Depot

40.6 - 55.01. A/B, tools, stage

11.1 - 12.62. Habitat

3. Crew Vehicle 10.8 Depot propellant 75.7-88.5

Manifest without Depot

1. Hab, Tools 27.8 – 34.6

71.1 – 148.5 2. Transfer Vehicle

3. Crew Vehicle 10.8

Manifest 1 with Depot

36.6 - 43.01. Hab, tools, stage

2. Crew Vehicle 10.8 **Depot Propellant** 64.0 - 133.6

Manifest 2 with Depot

23.8 - 36.91. Hab, tools, stage

2. Habitat 11.1 - 12.6

3. Crew Vehicle 10.8

64.0 - 133.6Depot propellant

LEO Propellant Depot Reduces SEL2 HSM HLV Requirement from 70 – 160 t to 25 – 60 t

Human Servicing of SEL2 Telescopes Requires Enhanced Capabilities

- Servicing capabilities from Hubble and Orbital Express
- Direct entry upon return requires...
 - Heavy Lift Vehicle (75 150 t) for transfer stage, or
 - LEO propellant transfer/depot, or
 - Assembly of multiple transfer stages in LEO
- Aerobrake for asset recovery in LEO